
The Design and Implementation of an
Autonomous Surveillance and Security Drone

University of Illinois at Urbana-Champaign
Department of Computer Science - Senior Thesis ∗

May 28, 2016 – Version 1.3

Abstract

Autonomous surveillance drones, also known as unmanned aerial
vehicles, would improve security for individuals, businesses, and gov-
ernment agencies. Drones present an affordable, effective method to
automatically surveil a large open area to identify unauthorized person-
nel at close range. This paper fully describes the design and implemen-
tation of an autonomous unmanned aerial vehicle which can patrol an
area and identify humans. Potential future improvements of my aircraft
and some alternative uses of unmanned aerial surveillance, other than
surveilling an area of private property, are also discussed.

∗A senior thesis submitted to the Computer Science Department of University of Illinois
at Urbana-Champaign in partial fulfillment of the requirements for the degree of Bachelor
of Science.

I would like to thank my thesis advisor, Ryan Matthew Cunningham, for his guidance
and support of this project.

 Nikki Fayra
 nikki@fayra.com
https://nikkifayra.com

Contents

Title Page 1

Contents 2

1. Introduction 4

2. Drone Design and Construction 4

2.1. Raspberry Pi . 5

2.2. ArduPilot Mega . 5

2.3. Drone Registration . 5

2.4. Drone Assembly . 6

3. Drone Configuration 12

3.1. Raspberry Pi Configuration . 12

3.1.1. Operating System Installation and Configuration 12

3.1.2. Network Connectivity and Configuration 13

3.1.3. WiFi Connection Analysis . 14

3.2. APM Planner and Mission Planner . 16

3.3. ArduPilot Mega Configuration . 17

4. Initial Flight Testing 20

4.1. Battery Charging . 20

4.2. Incorrect Motor Configuration . 21

4.3. Camera GPS Interference . 21

4.4. Flight Time . 23

5. Control Program and Server 23

5.1. Dependencies . 24

5.2. Capturing Images . 25

5.2.1. Capture Thread . 25

5.2.2. Multithreaded HTTP Server and Image Stream 27

5.3. Web Control Interface . 29

5.3.1. Google Maps API . 30

5.4. Start Script . 33

5.4.1. USB Reset . 34

2

5.5. Controlling the Drone . 35

5.5.1. Arming . 36

5.5.2. Takeoff . 38

5.5.3. Autonomous GPS Guided Flight . 38

5.5.4. Reaching the Node . 43

5.5.5. Proportional-Integral-Derivative Heading Controller 45

5.5.6. Landing . 47

5.5.7. Testing with drone simulator . 49

5.6. Audio Playback . 49

5.7. Logging . 49

5.8. Shutting down . 50

6. Image Processing 51

6.1. Dependencies . 51

6.2. Initial Attempt . 52

6.2.1. Capturing Test Images . 52

6.2.2. Algorithm . 52

6.2.3. Results from Test Data . 55

6.2.4. Results from Live Data . 57

6.3. Final Algorithm . 57

6.3.1. Algorithm . 58

6.3.2. Results . 60

7. Live Image Processing Implementation 60

7.1. Dependencies . 61

7.2. Receiving Images from the Drone . 61

7.3. Email Functionality . 62

7.4. Live Results . 65

8. Conclusion 66

A Appendix: Parts and Components List 68

References 70

Copyright and Fair Use Notice, Information, and Disclaimers 78

3

1. Introduction

The main goal of this project was to design and implement an autonomous

aerial drone which could autonomously patrol an outdoor environment and

identify unauthorized personnel through image processing. The target au-

dience would be individuals, businesses, and government entities.

Individuals could have a personal drone to conduct surveillance of their pri-

vate property. They could also have a personal drone follow them overhead

to surveil their surroundings if not on their property, such as a public park.

Businesses and government entities could have a fleet of drones patrolling

an area of their property, such as vacant space surrounding research labs,

production facilities, and military installations.

In this paper, I fully describe the design and implementation of an autonomous

drone which can patrol an area and identify humans.

2. Drone Design and Construction

I initially wanted to design and implement an autonomous surveillance and

security drone built solely with the Raspberry Pi[1] as the controller. After

realizing that controlling the motors and doing image processing would be

very difficult without using a real time operating system[2], I decided to ad-

ditionally use the ArduPilot Mega (APM)[3] flight controller which would be

responsible for controlling the motors. I also used additional components

such as a camera and a speaker. The full parts list can be seen in Appendix A.

4

2.1. Raspberry Pi

I chose to use the Raspberry Pi instead of another similar small computer

since it has the largest community surrounding it. I initially started with the

Raspberry Pi 2 Model B, but later also developed the drone with the Rasp-

berry Pi 3 Model B. The Raspberry Pi is responsible for the high level drone

control code which interfaces with the ArduPilot Mega, and it is also respon-

sible for capturing images from the camera.

2.2. ArduPilot Mega

The ArduPilot Mega contains autopilot firmware and an Inertial Measure-

ment Unit containing a combination of sensors such as an accelerometer

and a barometric pressure sensor1[4]. An additional external compass/GPS

unit is also used.

2.3. Drone Registration

In the United States, unmanned aircraft weighing more than 250 grams must

be registered with the Federal Aviation Administration.[5] If a drone weighs

more than 25 kilograms, then it needs to be registered as a traditional air-

craft. If it weighs more than 250 grams but less than 25 kilograms it can be

registered online as a Small Unmanned Aircraft. There is a $5 fee, and the

registration identifier must be placed on the drone. I received the registra-

tion identifier, FA3APMN3FT, which I secured on the front of the camera and

on the Raspberry Pi case.

1The barometric pressure sensor follows air pressure, so the altitude is not exact.

5

2.4. Drone Assembly

I began with assembling the DJI Flamewheel F450 ARF Kit one arm at a time

to the lower power distribution board. I used the F450 User Manual v2.2[7]

and the DJI F330 FlameWheel QuadCopter Assembly guide[8] as references

when assembling the drone. While assembling each arm I also fastened a

leg, electronic speed controller, and a motor as shown in figure 1, 2, 3, and

4. The electronic speed controllers (ESCs) were soldered to the power dis-

tribution board. The motors were connected to the ESCs via the motors’

bullet connectors and the servo connections were temporarily attached to

the landing gear.

Figure 1: Flamewheel F450 assembly diagram[7]

6

Figure 2: DJI Flamewheel F450 landing gear assembly diagram[9]

Figure 3: DJI Flamewheel F450 electronic speed controller and motor assembly
diagram[7]

After most of the frame was assembled, I determined placement for the Ar-

duMega Pilot (APM), GPS/compass module, Raspberry Pi, and battery. The

APM was placed on the top of the lower board. I installed the GPS/com-

pass module onto the bottom of the upper board using the supplied adhe-

sive pad. The Raspberry Pi was fastened to the top of the upper board using

Velcro strips and zip-ties.

7

Figure 4: Partial assembly of arms, electronic speed controllers, motors, and landing gear

I connected the three male to male servo connec-

tors between the radio receiver and the APM’s in-

put channels 1-6 and 8. Channel 8 supplies the re-

ceiver with power. The servo connectors from the

ESCs were connected to the APM’s output channels

1-4 as shown in figure 5. The battery input and UBEC

step down converter power wires were soldered to

the lower power distribution board. The APM power

module was fastened to one of the legs.

Figure 5: Motor chan-
nel layout for Quad X
configuration[13]

8

Electronic speed controller→

Motor→

The battery was fastened below the lower board using a supplied Velcro har-

ness and zip-ties. The female XT60 connector was soldered to the input

power wires. The input power wires were connected to the APM power mod-

ule pass-through, and the battery was connected to the APM power module.

See figure 6, 7, and 8.

Figure 6: Partial assembly including the APM, radio receiver, power wires, UBEC step
down converter, and APM power module

Figure 7: GPS/compass mod-
ule placement

Figure 8: Raspberry Pi, APM, and battery placement

9

APM→

Input power wires→

↓ Radio receiver

↑ APM power module

←− Raspberry Pi

←− APM

←− battery

The power wires from the UBEC for the Raspberry Pi were connected to a

female to male servo wire. The male end of the servo wire was cut, and

soldered to the power and ground connections of the micro-USB end of a

micro-USB cable. This allowed the Raspberry Pi to be powered via its micro-

USB port instead of the power GPIO pin. Powering it via the GPIO pins does

not protect against incorrect voltage or current spikes, which could perma-

nently damage the board[10]. Current spikes and incorrect voltage can occur

on the drone due to the motors requiring more power or the battery being

low, so I decided that powering via USB was the safest option.

The micro-USB cable connecting the Raspberry Pi to the ArduMega Pilot

(APM) for communication was stripped, and the power wire was cut. This

was to prevent the APM from receiving power from the Raspberry Pi, since

the APM is powered from the power module. Supplying power over USB and

the power module at the same time could damage the components[11]. See

figure 9.

Figure 9: USB cable wiring

10

Raspberry Pi Power Cable→

APM and Raspberry Pi data cable−→

The speaker was mounted to the back of the lower

board using Velcro and a zip-tie. The camera was

mounted to the front of the lower board, and the

USB WiFi dongle was plugged in to the Raspberry

Pi. See figure 10, and 11. The
Figure 10: Speakerremaining connections were made and pro-

pellers were fastened as shown in figure 12.

Figure 11: Completed initial drone
build without propellers

Figure 12: Full Drone Layout, modified image by Jethro Hazelhurst[12]

11

Camera→

3. Drone Configuration

3.1. Raspberry Pi Configuration

Raspbian GNU/Linux 8 (Jessie)[15], a Debian derivative, was installed as

the Raspberry Pi’s operating system. Specifically, I installed the 2015-09-28

build[16] on the Raspberry Pi 2 Model B, and the 2016-02-26 build[17] on

the Raspberry Pi 3 Model B. I have kept the systems up-to-date, so the most

recent version of the operating system should work without problems.

3.1.1. Operating System Installation and Configuration

Win32 Disk Imager[18] was used to write the

Raspbian image to the micro-SD card. Similar

graphical and command line utilities are avail-

able for GNU/Linux and Mac OS X operating

systems.[19] Upon first booting the Raspberry Pi,

I connected it to my local network via Ether-

net and logged in via SSH. I changed the pass-

word for the default user, ”pi”, from ”raspberry”

to a stronger password with the passwd utility, ex-

panded the

Figure 13: Raspberry Pi
Configuration

filesystem to the entire micro-SD card with raspi-config[28], and updated

packages with sudo apt-get update and sudo apt-get upgrade.

I installed tightvncserver with apt-get to access the X desktop remotely

via VNC when needed. I launched a vncserver instance, connected with

the TightVNC desktop client[90], and went into the Raspberry Pi Configu-

ration2 to boot to CLI instead of the X desktop, change hostname, disable

2raspi-config can also be used for these configuration options.

12

auto-logins, and enable the camera module. 3

3.1.2. Network Connectivity and Configuration

In order for the drone to have local network con-

nectivity and Internet connectivity, I used my

Samsung Galaxy Note 5’s mobile WiFi hotspot

which uses WPA2-PSK with CCMP (AES-based)

encryption.[20][21]

This communication method is secure as long as:

• The pre-shared key is kept secret.[22]

• The pre-shared key has sufficient entropy.

It is important to note that the pre-shared key

needs to have sufficient entropy, otherwise the

encrypted key could be obtained by an attacker

from snooping on network traffic and it could

be cracked offline.[23][24] I used How Secure Is

My Password?[25] to measure the approximate

strength of a password equivalent to the one I

used and it reports, ”It would take a computer

about 131 Billion Years to crack your password.”

Figure 14: Samsung
Galaxy Note 5 Mobile
Hotspot

There are other security concerns relating to WPA2 such as attacks on Wi-Fi

Protected Setup, Microsoft’s MS-CHAPv2 protocol, and a vulnerability abus-

ing the shared Group Temporal Key which assumes the attacker is already

authenticated.[20] These concerns do not affect my implementation and

use.

WPA2 Enterprise solves the security issues discussed relating to authentica-

3Enabling the camera module is only needed for the Raspberry Pi camera module, not a
USB webcam.

13

tion since it no longer depends on a pre-shared key.[22][27][26] It is easy to

infer how my implementation could be extended to use a WPA2 Enterprise

network with multiple access points. This would allow greater connectivity

range, better security, and would be a good choice for connecting surveil-

lance drones to a WiFi network on business and government property.

In order to connect to the WiFi access point with the Raspberry Pi I edited

/etc/wpa_supplicant/wpa_supplicant.conf to the following configuration

to connect to my WPA2-PSK network[42][43]:

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev

update_config=1

network={

ssid="SSID_Goes_Here"

psk="Pre-shared_key_goes_here"

proto=WPA2

key_mgmt=WPA-PSK

pairwise=CCMP

}

These lines in /etc/network/interfaces were also commented out, so the

system would only use the wlan0 interface.

#allow-hotplug wlan1

#iface wlan1 inet manual

wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf

3.1.3. WiFi Connection Analysis

For the Raspberry Pi 3 Model B, I disabled the onboard WiFi card as the per-

formance was not good in flight due the lack of an external antenna. Instead,

the USB WiFi dongle was used.

14

It is possible to solder an external antenna to the board, but it would violate

Federal Communications Commission regulations[45]. The board contains

pads where U.FL connector for an external antenna could be soldered. See

figure 15.

To disable the driver for the onboard WiFi

card, and also the onboard Bluetooth card,

/etc/modprobe.d/raspi-blacklist.conf was

edited to the following:[44]

blacklist brcmfmac

blacklist brcmutil

blacklist btbcm

Figure 15: U.FL connec-
tor overlaid on the pro-
vided pads[45]

blacklist hci_uart

I initially tested connection speed indoors by setting up a NGINX HTTP server[89]

on the Raspberry Pi. I downloaded a 100 megabyte (100MB) file from a dis-

tance of 0.5 meters, and 10 meters with walls as obstacles and measured the

following approximate average speeds: 4

Configuration Speed (0.5m) Speed (10m)

Raspberry Pi 2 Model B With USB WiFi Dongle 1.8 MB/s 700 KB/s

Raspberry Pi 3 Model B With onboard WiFi 5 MB/s 1.2 MB/s

Raspberry Pi 3 Model B With USB WiFi Dongle 530 KB/s 400 KB/s

As shown, the Raspberry Pi 2 Model B performs significantly better than the

Raspberry Pi 3 Model B using the same USB WiFi dongle5, most likely due to

additional power draw requirements on the Raspberry Pi 3 Model B, so it is

unable to supply enough power to the USB WiFi dongle.[46]

4I also tested connecting the Raspberry Pi systems to a home router instead of the phone
hotspot. The speeds were the same, showing that the phone is not a bottleneck.

5Both Raspberry Pi systems use the same model SD card, thus read speed is not an issue.

15

The connection using the USB dongle during flight is slower than the (10m)

results above, likely due to interference from motors and radio transmitter,

additional power draw, and greater distance. A connection can be main-

tained at approximately 45 meters with direct line of sight.

3.2. APM Planner and Mission Planner

The ArdruPilot Mega (APM) uses the MAVLink (Micro Air Vehicle Link)[31][32]

protocol over serial to communicate with a companion computer or ground

station. In order to configure and arm the ArdruPilot Mega for flight, soft-

ware supporting the MAVLink protocol and APM configuration is needed.

APM Planner[29] and Mission Planner[30] are two available programs which

communicate with the APM over MAVLink and support configuration and

installing firmware. I installed Mission Planner on a Windows computer, and

compiled APM Planner on the Raspberry Pi. The steps needed to compile

APM Planner along with installing its dependencies are listed below.

[29]

git clone https://github.com/ArduPilot/apm_planner

cd apm_planner

sudo apt-get install qt5-qmake qt5-default qtscript5-dev \

libqt5webkit5-dev libqt5serialport5-dev libqt5svg5-dev \

qml-module-qtquick2 libsdl1.2-dev libsndfile-dev \

flite1-dev libssl-dev libudev-dev libsdl2-dev

qmake qgroundcontrol.pro

make

Running APM Planner:

./release/apm_planner

16

3.3. ArduPilot Mega Configuration

The first step was to install firmware via Mission Planner. The APM was con-

nected to Mission Planner over a USB cable at a baud rate of 115200.

APMCopter firmware v3.2.1 is the latest supported firmware for the APM,

since later versions are too large to fit onto the board.[33] In Mission Planner,

under Initial Setup→ Install Firmware, the APMCopter Quad firmware

was selected. This will automatically install the latest supported firmware

for the device.[34] See figure 16.

Figure 16: Mission Planner firmware installation screen

Next, the hardware was configured.[35] Un-

der Initial Setup → Mandatory Hardware →

Frame Type, The ’X’ frame type was selected.

Under Initial Setup → Mandatory Hardware →

Radio Calibration, the radio was calibrated by

moving each stick and trim tab on the radio trans-

mitter through its full range. This menu is similar

to the APM Planner menu which can be seen in

figure 19.

Figure 17: Hobby King
2.4Ghz 6Ch Transmitter

17

After the radio was calibrated, the drone was disconnected from Mission

Planner and the electronic speed controllers (ESCs) were calibrated using

the ”All at once” method.[36] The steps to this method are the following:

1. Turn on the radio transmitter with maximum throttle.

2. Connect the battery to the drone.

3. Ensure the APM’s LED lights are forming a cyclical pattern.

4. Disconnect and reconnect the battery.

5. The APM is now in ESC calibration mode. The red and blue LEDs

should be blinking alternatively.

6. Wait for the ESCs to emit a musical tone, in this case it is three beeps

for the 3 cell battery. Two additional beeps indicate that the maximum

throttle has been captured.

7. Set the transmitter’s throttle to the minimum position.

8. The ESCs should now emit a long tone indicating that calibration is

complete. The battery can now be disconnected.

Next, the compass and accelerometer were calibrated using APM Planner on

the Raspberry Pi. This was done outdoors so that indoor electronics would

not interfere. I used an Android SSH app[72] to connect to the Raspberry

Pi, then launched a vncserver instance and accessed it via an Android VNC

client app.[73] APM Planner was launched and connected to the APM via

USB on the device /dev/ttyACM0 at a baud rate of 115200. See figure 18.

The compass calibration is accessed under Initial Setup→ Mandatory Setup

→ Compass. This involved rotating the drone on all three axes for a set time

frame, so that each side of the vehicle (front, back, left, right, top and bot-

tom) pointed towards the ground.[37] The magnetic declination (angle be-

tween magnetic north and true north)[38], is determined automatically from

GPS.[39]

The accelerometer calibration is accessed under Initial Setup→ Mandatory

Setup→ Accel Calibration. This involved placing each of the vehicle’s sides

level on the ground.[40]

18

Figure 18: APM Planner

Finally, compass-motor calibration was performed to

account for magnetic interference from the motors.

I used Mission Planner indoors for this step since

it was not working with APM Planner. This is ac-

cessed under Initial Setup → Optional Hardware →

Compass/Motor Calibration. The calibration involves

running the motors from no throttle to full throttle, then

quickly bringing the throttle back to zero. A graph dis-

playing the percentage of interference by throttle level is

shown. According to the ArduPilot documentation, the

Figure 19: APM
Planner Initial
Setup Menu

recommended interference is below 30% and 31% - 60% is considered a grey

area. My interference was in this grey area range.[41]

19

4. Initial Flight Testing

My initial flight tests consisted of putting APM in stabilize mode and arm-

ing it with APM Planner via VNC. Stabilize mode allows the vehicle to be

flown manually with the radio transmitter, but self-levels the roll and pitch

axes.[14] My secondary tests involved using the GPS-assisted loiter mode,

which holds a GPS position but allows for manual control of altitude and

position via the radio transmitter.[61]

4.1. Battery Charging

I used 2200mAh (milliamperehours) three

cell 40C 11.1v lithium polymer batter-

ies to power the drone. The C rating,

in this case 40C, indicates the continu-

ous current draw in amps that the cell

supports.[51] The C rating is multiplied by

the cell capacity in mAh to obtain the con-

tinuous current in mA (milliamps).

Figure 20: Tenergy TB6-B Balance
Charger shown charging a battery.

The batteries were charged in balance mode using a Tenergy TB6-B Balance

Charger at 1C, or 2.2amps, to an end voltage of 12.6v, or 4.2v per cell.[49][52]

The batteries were charged in a fireproof bag in case of an accidental fire.

See figure 20.

If the battery is below 3v per cell before charging, special care needs to be

taken when recharging the battery. Below this voltage, the battery could be

permanently damaged due to its internal resistance to charging increasing.[50]

The battery needs to be slowly charged at a rate of C

20
through C

10
until it is

above 3v per cell.

20

4.2. Incorrect Motor Configuration

Initially the drone would immediately flip over upon takeoff. I was not sure

if this was due to incorrect configuration as described in subsection 3.2. Af-

ter re-calibration and troubleshooting, I realized that one of the motors was

rotating in the incorrect direction. When initially building the drone, what I

decided on as the ”front” orientation was different from the finished

product due to the mounting placement for the camera,

and the motors were in incorrect positions according to

their labels. See figures 5 and 21.

After swapping the motors’ locations by 90 degrees, the

problem persisted. The labels on the motors do not mat-

ter since they can rotate in either direction. To fix the

problem, two of the bullet connectors between the mo-

tor and the Electronic Speed Controller needed to be

swapped.[13][14]

Figure 21:
Motor with di-
rection label
shown

4.3. Camera GPS Interference

After the motor configuration was fixed, the drone flew correctly in stabilize

mode. The drone also flew without issue in the GPS-assisted loiter mode.

I wrote the following simple bash script to capture an image every two sec-

onds using the raspistillRaspberry Pi camera module utility.[88] The script

also places the images into a directory for the NGINX web server, and up-

dates an HTML file with the new file.

#!/bin/bash

while sleep 2

do

DATE=$(date +"%Y-%m-%d_%H%M%S")

21

raspistill --nopreview --timeout 1 -vf -hf -o /var/www/html/camera/$DATE.jpg

list_dir=‘ls -t /var/www/html/camera/‘

echo "<html><body>" > /var/www/html/camera/index.html

for i in $list_dir

do

echo "$i</br>" >> /var/www/html/camera/index.html

done

echo "</body></html>" >> /var/www/html/camera/index.html

done

When attempting to fly the drone in the GPS-assisted loiter mode with the

camera script active, the drone was not stable when the camera was in use

and crashed. After some research to determine if this was a power problem

or interference problem, I determined that when the camera was in use it

was interfering with the GPS.

I attempted to fix this by creating a Faraday cage around the camera, while

monitoring the GPS fix within APM Planner. Wrapping aluminum-foil around

the camera’s ribbon cable and completely around the camera and its board

solved

Figure 22: Foil wrapping for camera module ribbon cable

the issue, but when enough room was made for the camera module, the

problem persisted. See figure 22.

22

I replaced the Raspberry Pi camera module with a USB webcam which did

not interfere with the GPS. The line in the above bash script using raspistill

was modified to the following, using the fswebcam program obtained with

apt-get.

fswebcam --resolution 1600x1200 /var/www/html/camera/$DATE.jpg

4.4. Flight Time

Using the 2200mAh 11.1v three cell batteries, the drone can fly for approx-

imately 15 minutes before the battery’s voltage drops below 10v, at which

point the drone should be landed. Time varies depending on usage and wind

conditions. When the battery drops below around 9.5v, the drone will not

have enough power to continue operating safely. I had one instance during

flight testing when the battery’s voltage was too low, and the drone crash

landed from 20 meters altitude.6 The propellers were still operating, but

could not land the drone slow enough. Due to this crash, and a few other

accidents when initially testing the drone, a few legs and propellers were

damaged and needed to be replaced.

5. Control Program and Server

I wrote the code to control the drone with Python 2.7 the using DroneKit-

Python[48] library. This library interfaces with the APM via MAVLink. I used

various other libraries for capturing images, processing images, communi-

cation, and other features. The other libraries are described in later sections.

The code has various configuration options which will be described in their

relevant sections.

6The voltage of the battery before recharging was 2.7v per cell, and needed to be
recharged carefully as described in subsection 4.2.

23

Figure 23: Software Architecture overview, the image processing code is shown in sec-
tion 6. and section 7.

5.1. Dependencies

The dependencies needed for the code segments in this section of the doc-

ument can be installed on the Raspbian with the following commands7:

sudo apt-get install python-dev

sudo pip install dronekit

sudo apt-get install python-opencv

sudo apt-get install espeak

python-dev installs the python development headers which are needed when

DroneKit-Python is installed. The pymavlink[91] package is installed along

with DroneKit-Python, which is a MAVLink communication library for python.

The OpenCV 2 Python library[92] is used for capturing images, and will be

7Python import statements are not shown in the code segments for the sake of simplicity.

24

used for image processing in section 6. eSpeak[77], along with Omxplayer[78]

which is pre-installed on Raspbian, are used for text to speech audio output.

I also used Ivmech’s PID Controller for heading control. It is a simple im-

plementation of a Proportional-Integral-Derivative controller in Python. I

made a slight modification to it in order for it to be able to be used as a

Python module.[56]

5.2. Capturing Images

After determining I was going to use python for DroneKit-Python, I started

working on the image capturing aspect first. I began my codebase by mod-

ifying Igor Maculan’s Simple Python Motion Jpeg Server[54] into a multi-

threaded8 HTTP server,[55] so that multiple requests could be handled si-

multaneously.

5.2.1. Capture Thread

I defined a thread to capture the images from the USB webcam using OpenCV,

save the images to disk, and store the last image with its length in a global

variable.

class CaptureThread(Thread):

def __init__(self):

’’’ Constructor. ’’’

Thread.__init__(self)

def run(self):

while True:

try:

rc,img = capture.read()

8I am using Python’s higher level threading interface, which only allows one thread to ex-
ecute python code at a time due to the global interpreter lock, but this is still an appropriate
model to run multiple tasks simultaneously via context switching.[59]

25

if not rc:

continue

imgRGB=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)

jpg = Image.fromarray(imgRGB)

filename = #this is constructed from a combination of

coordinates and current time which will be shown in the

paper later

tmpFile = open("images/" + filename, "w")

jpg.save(tmpFile,’JPEG’)

currentJpg = jpg

currentJpgLength = tmpFile.tell()

tmpFile.close()

time.sleep(1.0/captureRate) #sleep for 1/captureRate, where

captureRate is the configuration option defining the

number of frames per second to capture.

except KeyboardInterrupt:

break

The camera is initialized and the capture thread is started9 with the following

if the configuration option USE_CAMERA is set to True:

if USE_CAMERA:

capture = cv2.VideoCapture(0)

capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, 640)

capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, 360)

capture.set(cv2.cv.CV_CAP_PROP_SATURATION,0.2)

captureThreadObj = CaptureThread()

captureThreadObj.setName(’Capture Thread’)

captureThreadObj.start()

9Threads for other tasks will be shown in later sections. They are started in a similar
manner, so their start code has been omitted for the sake of simplicity.

26

5.2.2. Multithreaded HTTP Server and Image Stream

The ThreadedHTTPServer class was created, which allows HTTP requests to

be handled in separate threads.

class ThreadedHTTPServer(ThreadingMixIn, HTTPServer):

"""Handle requests in a separate thread."""

bind_and_activate = False # Prevents the class constructor from

attempting to bind and activate the server

allow_reuse_address = True #Allows the server’s address and port to be

reused if it was improperly terminated

The RequestHandler class is the main HTTP server:

class RequestHandler(BaseHTTPRequestHandler):

def do_GET(self):

self.path is a string containing the HTTP GET request, and this

function uses pattern matching to handle the requests

if self.path == ’/cam.mjpg’ and USE_CAMERA and USE_MJPEG_STREAM:

If the camera stream is requested, the camera is enabled with

USE_CAMERA, and the stream is enabled with USE_MJPEG_STREAM,

then the request is handled

Send the HTTP response headers

self.send_response(200)

self.send_header(’Content-type’,’multipart/x-mixed-replace;

boundary=--jpgboundary’)

self.send_header(’Access-Control-Allow-originalin’, ’*’)

self.end_headers()

Loop infinitely and send the last captured frame

while True:

try:

if currentJpg is not None:

self.wfile.write("--jpgboundary")

self.send_header(’Content-type’,’image/jpeg’)

self.send_header(’Content-length’,

str(currentJpgLength))

27

self.send_header(’Access-Control-Allow-originalin’, ’*’)

self.end_headers()

currentJpg.save(self.wfile,’JPEG’)

time.sleep(1.0/viewRate) #sleep for 1/viewRate, where

viewRate is the configuration option defining the

number of frames per second to stream.

except KeyboardInterrupt:

break

return

elif self.path == ’/something/else’:

Additional paths will be processed here, such as

/action/arm, which arms the drone

elif self.path.startswith(’/another/path’):

Some paths are handled by pattern matching the prefix, since

they contain additional information at the end. Such as

/set/destqueue/, which sets a way-point and contains

latitude and longitude after the prefix.

def log_message(self, format, *args):

This function is defined with no body to prevent the server from

logging activity in console output

return

The server is then started with:

server = ThreadedHTTPServer((’’,8080),RequestHandler)

28

5.3. Web Control Interface

I created a web interface to send com-

mands to the drone, display the cam-

era stream, and view status informa-

tion from the drone. The main file for

this web interface is a HTML file.

I created a REST-like APIa[86] using

HTTP GET request paths. For exam-

ple, the request ”/action/arm” arms

the drone.

This JavaScript function sends an

asynchronous HTTP GET request:[57]

function httpGetAsync(url) {

var xmlHttp = new XMLHttpRequest();

xmlHttp.open("GET", url, true);

xmlHttp.send(null);

}

As seen in figure 24, the web inter-

face contains a Google map, camera

stream, live status information, text

fields, and buttons.

aIt is not strictly a REST API, since it only
uses GET requests. A proper REST API would
be an improvement.

Figure 24: Web control interface

29

The text fields and buttons use the httpGetAsync(url) JavaScript function

in order to send information to the drone. This example below arms the

drone10:

<button onclick="httpGetAsync(’/action/arm’)" style="width: 150px;height:

100px;position: absolute; LEFT:1020px; TOP:0px;"><h2>Arm</h2></button>

The live drone status information is stored in a div:

<div id="status">STATUS LOADING</div>

This is updated with the following JavaScript:

function updateStatus(){

var xmlHttp = new XMLHttpRequest({

mozSystem: true

});

xmlHttp.open("GET", "/status.html", false);

xmlHttp.send(null);

var res = xmlHttp.responseText;

document.getElementById("status").innerHTML = res;

}

5.3.1. Google Maps API

The Google Maps JavaScript API[58] was used to display the current location

of the drone, shown as a green marker in figure 24 along with way-points.

The map is initialized with the following JavaScript code:

var map; // The map

var dronelatLng; // Current drone latitude and longitude

var marker = null; // Drone position marker

var markers = []; // Waypoint markers

10See subsubsection 5.5.1. for the Python web server side of this code

30

var lastMarkerRetval = ""; // Stores the previous way-point markers

// Initializes the map

function initMap() {

getLatLon(); // Get the current latitude and longitude of the drone

// Parser function parses the latitude and longitude string into a Google

Maps latitude/longitude object

var latlng = getLatLngFromString(dronelatLng);

// Initialize the map

map = new google.maps.Map(document.getElementById(’map’), {

center: latlng,

zoom: 19

});

// Add a listener for a tap on the map, which will add a new way-point

map.addListener(’click’, function(e) {

placeMarkerAndPanTo(e.latLng, map);

});

}

// Gets the current latitude and longitude of the drone

function getLatLon() {

var xmlHttp = new XMLHttpRequest({

mozSystem: true

});

xmlHttp.open("GET", "/get/latlon", false);

xmlHttp.send(null);

dronelatLng = xmlHttp.responseText;

}

// When the map is tapped, a request is sent containing the new way-point

function placeMarkerAndPanTo(latLng, map) {

var xmlHttp = new XMLHttpRequest({

mozSystem: true

});

31

xmlHttp.open("GET", "/set/destqueue/" + latLng.toString(), false);

xmlHttp.send(null);

}

The map object is inserted into the HTML file using the following, where

$GOOGLEMAPSAPIKEY is the Google Maps API key obtained from a Google De-

veloper account.[58]

<script src="https://maps.googleapis.com/maps/api/js?

key=$GOOGLEMAPSAPIKEY&callback=initMap&sensor=false" async defer></script>

This JavaScript updates the map and the drone’s status HTML on a set inter-

val, in this case every 500ms:

function updateFunction() {

getLatLon(), placeMarker(), placeDestMarkers(), updateStatus()

}

setInterval(updateFunction, 500);

getLatLon() is shown above, and gets the current latitude and longitude of

the drone. updateStatus() is also shown above, and updates the drone sta-

tus HTML.

placeMarker(), shown below, adds a green marker icon[74] to the map with

the current position of the drone. placeDestMarkers(), shown below, gets

the current way-point queue from the drone, clears the current way-point

markers, and adds the current way-points to the map.

function placeMarker() {

var latlng = getLatLngFromString(dronelatLng);

if(marker == null){

marker = new google.maps.Marker({

position: latlng,

map: map,

icon: ’green_marker.png’

});

32

} else {

marker.setPosition(latlng);

};

}

function placeDestMarkers() {

var xmlHttp = new XMLHttpRequest({

mozSystem: true

});

xmlHttp.open("GET", "/get/destqueue", false);

xmlHttp.send(null);

var destList = xmlHttp.responseText;

// Ensures that the new markers are not identical to the existing ones

if(destList != lastMarkerRetval){

lastMarkerRetval = destList;

destList = destList.replace(/[({})]/g, ’’);

destList = destList.split(’,’);

deleteMarkers(); // Helper function to clear the current markers

var j = 0;

for (var i = 0; i < destList.length; i+=2){

addMarker(new google.maps.LatLng(parseFloat(destList[i]),

parseFloat(destList[i+1])), j++);

}

}

}

5.4. Start Script

I used a bash script to start my code while developing. Errors in the code

could cause the program to hang, or the APM to refuse new connections.

Python instances are killed before the code starts, and after it exits. usbreset[62]

is a C program which resets the APM’s USB device.

pkill -9 python # Kill leftover python instances

33

sudo ./usbreset /dev/bus/usb/001/004 # Reset usb device

python server.py # Start the server, control, and image capture code

pkill -9 python # Kill leftover python instance

The APM’s USB device was found with lsusb.

$ lsusb

Bus 001 Device 005: ID 046d:0809 Logitech, Inc. Webcam Pro 9000

Bus 001 Device 004: ID 2341:0010 Arduino SA Mega 2560 (CDC ACM)

Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp. SMSC9512/9514 Fast Ethernet Adapter

Bus 001 Device 002: ID 0424:9514 Standard Microsystems Corp.

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

5.4.1. USB Reset

The following is the code for usbreset[62]:

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

#include <errno.h>

#include <sys/ioctl.h>

#include <linux/usbdevice_fs.h>

int main(int argc, char **argv)

{

const char *filename;

int fd;

int rc;

if (argc != 2) {

fprintf(stderr, "Usage: usbreset device-filename\n");

return 1;

}

filename = argv[1];

34

fd = open(filename, O_WRONLY);

if (fd < 0) {

perror("Error opening output file");

return 1;

}

printf("Resetting USB device %s\n", filename);

rc = ioctl(fd, USBDEVFS_RESET, 0);

if (rc < 0) {

perror("Error in ioctl");

return 1;

}

printf("Reset successful\n");

close(fd);

return 0;

}

This is compiled with gcc usbreset.c -o usbreset.

5.5. Controlling the Drone

I initially based my code off of DroneKit-Python’s Simple Go To example.[53]

Using argparse, the APM’s USB device is specified, then the connection is es-

tablished if the configuration variable CONNECT_VEHICLE is True.

parser = argparse.ArgumentParser()

parser.add_argument(’--connect’, default=’/dev/ttyACM0’,

help="vehicle connection target. Default ’/dev/ttyACM0’")

args = parser.parse_args()

if CONNECT_VEHICLE:

vehicle = connect(args.connect, wait_ready=True)

Get Vehicle Home location - will be ‘None‘ until first set by autopilot

35

while not vehicle.home_location:

cmds = vehicle.commands

cmds.download()

cmds.wait_ready()

if not vehicle.home_location:

print " Waiting for home location ..."

We have a home location, so print it!

print "\n Home location: %s" % vehicle.home_location

Set vehicle home_location, mode, and armed attributes (the only

settable attributes)

Home location must be within 50km of EKF home location (or setting will

fail silently)

my_location_alt=vehicle.location.global_frame

my_location_alt.alt=222.0 # Altitude of Urbana, IL

vehicle.home_location=my_location_alt

Set the vehicle’s mode to stablize initially

vehicle.mode = VehicleMode("STABILIZE")

while not vehicle.mode.name==’STABILIZE’: #Wait until mode has changed

print " Waiting for mode change ..."

time.sleep(1)

5.5.1. Arming

When the APM is armed from the web interface, the following code on the

web server is executed to arm the APM11.

elif self.path == ’/action/arm’:

self.send_response(200)

self.send_header(’Content-type’,’text/html’)

self.send_header(’Access-Control-Allow-originalin’, ’*’)

11There are many similar segments of code, where the web server handles an HTTP re-
quests to change state, send data, or update data. Most of these are not included in this
document for the sake of simplicity.

36

self.end_headers()

if CONNECT_VEHICLE:

armingInProgress = True # This variable is displayed in the

status HTML

vehicle.armed = True

while not vehicle.armed:

print " Waiting for arming..."

time.sleep(1)

armingInProgress = False

return

There is a suite of pre-arm safety checks which will prevent the APM from

arming if the required conditions are not met.[93] These include but are not

limited to: bad GPS fix, bad readings from the barometer and accelerometer

which usually go away by having the drone sit for a short time, and other

hardware failures.

The parameters of the pre-arm safety check can be modified, this was nec-

essary when testing functionality indoors, the following is an example:12

vehicle.parameters[’GPS_HDOP_GOOD’] = 300.0 # Sets the minimum GPS_HDOP

which is required to arm, default is 230

vehicle.parameters[’ARMING_CHECK’] = 0 # Disables the pre-arming checks

all-together, setting to 1 enables the checks

After landing, the APM will automatically disarm after a short time.

12HDOP is a measure of GPS precision.[75]

37

5.5.2. Takeoff

There are two methods for takeoff after arming the APM:

1. Keeping the APM in stabilize mode, or setting it to loiter mode, then

manually taking off using the radio transmitter.

2. Putting the APM into guided mode, then using

vehicle.simple_takeoff(configAlt), where configAlt is the globally

configured relative altitude13. The autopilot will then takeoff and hold

above its start position.14

5.5.3. Autonomous GPS Guided Flight

As seen in subsection 5.3., the web interface handles setting way-points.

Way-points are stored in a queue, and when the option configCircuit is

True nodes will be added back to the queue when they are flown to. This

allows the drone to autonomously fly in a continuous circuit over a pre-

defined area. See figure 26 and 25. Way-points are stored in a DestNode class

containing the latitude, longitude, altitude, and heading of each way-point.

When the node is reached, the drone will orient to the specified heading as

seen in subsubsection 5.5.5. The drone will approximately maintain this set

heading when flying to the next node.

13Relative altitude is defined in subsubsection 5.5.3.
14The EMERGENCY LANDING ENABLED option described in subsubsection 5.5.6.

needs to be set to False for this to work, otherwise the emergency landing code will place
the APM into land mode. To work around this, the APM needs to be placed in loiter mode
and the radio transmitter turned on to minimum throttle first.

38

Figure 25: Example with three states of the
queue for a three node circuit. Figure 26: Example circuit route

with nine nodes

The following is the code for the DestNode class:

class DestNode:

def __init__(self, lat, lng, alt, hdg):

self.lat = lat

self.lng = lng

self.alt = alt

self.hdg = hdg

When the map is tapped on the web interface, the HTTP server handles the

request ”/set/destqueue” below. A new DestNode is created and placed into

a queue. This is reflected on the web interface.

elif self.path.startswith(’/set/destqueue’):

latLngString = self.path.split(’/’)[-1]

latLngString = latLngString.replace("%20", " ")

latLngTuple = tuple(float(x) for x in

latLngString.strip(’()’).split(’,’))

lat = latLngTuple[0]

lng = latLngTuple[1]

39

node = DestNode(lat, lng, configAlt, configHeading)

destQueue.put(node)

self.send_response(200)

self.send_header(’Content-type’,’text/html’)

self.send_header(’Access-Control-Allow-originalin’, ’*’)

self.end_headers()

self.wfile.write(’True’)

return

When the drone is placed into guided mode via the web interface, it begins

autonomous flight.

elif self.path == ’/action/guided’:

self.send_response(200)

self.send_header(’Content-type’,’text/html’)

self.send_header(’Access-Control-Allow-originalin’, ’*’)

self.end_headers()

if CONNECT_VEHICLE:

guidedNextNode()

return

This function handles engaging the autopilot into guided mode, and starts

flight to the next node. If the setting, configCircuit is True, then the node is

added back to the end of the queue. LocationGlobalRelative uses the rela-

tive altitude, not absolute. For example, since Urbana, IL’s altitude is 222m,

if the node’s altitude is 10m, then the drone will fly to an altitude of 232m.

def guidedNextNode():

if destQueue.empty():

return

Place the APM into the guided flight mode.

modeChangeInProgress = True

40

vehicle.mode = VehicleMode("GUIDED")

while not vehicle.mode.name==’GUIDED’: #Wait until mode has changed

print " Waiting for mode change ..."

time.sleep(1)

modeChangeInProgress = False

node = destQueue.get()

If the configuration variable, configCircuit is True, then the node is

placed back onto the end of the queue.

if configCircuit:

destQueue.put(node)

currentDestinationNode = node

configHeading = node.hdg # Set the global heading to the node’s heading

currentDestinationNodeReached = False

If the configuration variable, configAltitudeOverride is True, then the

global altitude variable is used instead of the node’s altitude.

if configAltitudeOverride:

location = LocationGlobalRelative(node.lat, node.lng, configAlt)

else:

location = LocationGlobalRelative(node.lat, node.lng, node.alt)

The autopilot begins to fly to the node at the configured groundspeed

vehicle.simple_goto(location, groundspeed=configGroundspeed)

Routes can also be saved and loaded to/from the JSON format. The code

below saves the current route to a JSON file.

elif self.path.startswith(’/set/route’):

name = self.path.split(’/’)[-1]

name = name.replace("%20", " ") # Un-escape spaces

data = {’name’: name, ’nodes’: []} # begin building the JSON data

for node in list(destQueue.queue):

new_json_node = {’lat’: node.lat, ’lng’: node.lng, ’alt’:

node.alt, ’hdg’: node.hdg}

41

data[’nodes’].append(new_json_node)

file = open(json_routes_prefix + str(json_routes_index) +

json_routes_suffix, "w")

file.write(json.dumps(data, sort_keys=True, indent=4,

separators=(’,’, ’: ’)))

file.close()

json_routes_names_list.append(name)

json_routes_index=json_routes_index+1

self.send_response(200)

self.send_header(’Content-type’,’text/html’)

self.send_header(’Access-Control-Allow-originalin’, ’*’)

self.end_headers()

self.wfile.write(’True’)

return

These are stored in the routes directory with the format routeN.json, where

N is an integer, as defined by the below code:

json_routes_prefix = "routes/route"

json_routes_suffix = ".json"

json_routes_index = 0

json_routes_names_list = []

This code loads the route names into a list for display.

while os.path.isfile(json_routes_prefix + str(json_routes_index) +

json_routes_suffix):

json_data = open(json_routes_prefix + str(json_routes_index) +

json_routes_suffix)

data = json.load(json_data)

json_routes_names_list.append(data[’name’])

json_routes_index = json_routes_index+1

These routes are displayed on the web interface as seen in figure 27. Below

the status information in figure 24, Saved routes: is displayed with buttons

42

for each route. Clicking this button will load the route and it will display on

the map and in the Route: section. Clicking the Saved Route Configurations

hyperlink as shown in figure 24, will display the routes.html file generated

by the web server, showing the raw JSON for each route.

Figure 27: Route buttons, current route, and routes.html

5.5.4. Reaching the Node

The RouteThread class handles reaching the node, then moving onto the

next node. The isclose helper function was back-ported from Python 3.[79]

class RouteThread(Thread):

def __init__(self):

’’’ Constructor. ’’’

Thread.__init__(self)

def run(self):

while True:

43

if currentDestinationNodeReached:

Node is reached.

Heading control is now handled here, and timeAtNode is

updated to the timestamp when the drone was stabilized at

the node.

If the configuration variable, CONFIG_TIME_AT_NODE is not 0,

the drone wait at this node for CONFIG_TIME_AT_NODE

seconds, then the drone moves onto the next node.

if CONFIG_TIME_AT_NODE != 0 and timeAtNode != 0 and

int(time.time()) > timeAtNode + CONFIG_TIME_AT_NODE:

guidedNextNode()

elif currentDestinationNode is not None:

Node is not reached, and a destination is set.

if configAltitudeOverride:

currentAlt = configAlt

else:

currentAlt = currentDestinationNode.alt

This function isclose, is used to check if the drone is

approximately at the node

if isclose(currentDestinationNode.lat,

vehicle.location.global_relative_frame.lat,

abs_tol=0.00001) and isclose(currentDestinationNode.lng,

vehicle.location.global_relative_frame.lon,

abs_tol=0.00001) and isclose(currentAlt,

vehicle.location.global_relative_frame.alt, abs_tol=0.5):

If the isclose checks pass, the node was reached

currentDestinationNodeReached = True

Start heading control here

time.sleep(0.1)

def isclose(a, b, rel_tol=1e-09, abs_tol=0.0):

return abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)

44

5.5.5. Proportional-Integral-Derivative Heading Controller

Ivmech’s PID controller was used to align the drone on the correct heading

when the node was reached. The pulse width modulation of the radio trans-

mitter’s yaw channel is overridden as part of the process.[83] A PID controller

is a control loop feedback system, where proportional control accounts for

present values of the error, integral control accounts for accumulated values

of the error, and derivative control accounts for possible future values of the

error.[76]

The # Start heading control here section in the previous code contains

the following. This is where the PID controller is initialized. The coefficients

p = 0.2, i = 0.2, and d = 0were obtained experimentally using the drone sim-

ulator described in subsubsection 6.2.2. I am only using proportional and in-

tegral control. The integral control is needed to account for when the drone

is close enough to the correct heading, but error accumulates, it gets slightly

nudged to the correct heading.

currentNodeStable = False

currentNodeStableCount = 0

pid = ivPID.PID.PID(0.2, 0.2, 0)

pid.SetPoint=0.0

pid.setSampleTime(0.1)

The # Heading control is now handled here section in the previous code

contains:

heading = vehicle.heading

Compute the difference in degrees between the current heading and desired

heading for both directions: if the drone was to yaw right or left

rightDiff = positiveDiff(configHeading - heading)

leftDiff = positiveDiff(heading - configHeading)

if isclose(heading, configHeading, abs_tol=5):

If the heading is within 5 degrees of the desired heading, we consider

45

it stable.

if currentNodeStableCount < 30:

Increment a counter, we want the drone to be holding this heading

for 30 iterations before we consider it stable.

currentNodeStableCount = currentNodeStableCount+1

elif currentNodeStable is False:

If the drone has been stable for 30 iterations, we consider it

stable.

currentNodeStable = True

timeAtNode = int(time.time()) #start unix timestamp

currentNodeHeading = configHeading

else:

If the heading is not within 5 degrees, the drone is not stable.

currentNodeStableCount = 0

currentNodeStable = False

Now the PID controller is updated with the current heading difference,

using either the right or left difference, whichever is less.

if rightDiff < leftDiff:

pid.update(-rightDiff)

else:

pid.update(leftDiff)

output = pid.output

Now override the yaw channel’s pulse width modulation with scaled down

output from the PID controller, multiplied by the stable heading PWM,

and added to the stable heading PWM.

overridePWM = STABLE_YAW + (output*0.01)*STABLE_YAW

If this value is above the maximum desired rate of turn for left or right

yaw, it is set to the maximum desired rate.

if overridePWM < LEFT_YAW:

overridePWM = LEFT_YAW

elif overridePWM > RIGHT_YAW:

overridePWM = RIGHT_YAW

46

vehicle.channels.overrides[’4’] = overridePWM

The following constants are used above, which were determined experimen-

tally:

STABLE_YAW = 1525 # The PWM which holds the drone in a stable position

LEFT_YAW = 1300 # The PWM causing the maximum desired left yaw rate of turn

RIGHT_YAW = 1750 # The PWM causing the maximum desired right yaw rate of turn

5.5.6. Landing

There are three methods to land the drone normally:

1. Putting the APM into loiter mode via the web interface, then manually

landing using the radio transmitter.

2. If EMERGENCY_LANDING_ENABLED is True, turn off the radio transmitter

while not in loiter, stabilize, or land mode. This will enable the emer-

gency landing protocol described below which puts the APM into land

mode.

3. Putting the APM into RTL (return-to-land) mode via the web interface,

and having the autopilot land itself at the starting location.

The second method operates using the EmergencyLandingThread:

class EmergencyLandingThread(Thread):

def __init__(self):

’’’ Constructor. ’’’

Thread.__init__(self)

def run(self):

while True:

vehicle.channels[’3’] <= 900 detects that the radio

transmitter was turned off, this channel will not go below

this value unless the transmitter is off.

47

if vehicle.channels[’3’] <= 900 and vehicle.mode.name != "LAND"

and vehicle.mode.name != "LOITER" and vehicle.mode.name !=

"STABILIZE":

vehicle.channels.overrides[’4’] = None #Removes the yaw

override

Clear the destination nodes so that the drone will not

resume guided flight

currentDestinationNode = None

currentDestinationNodeReached = False

Put the APM into land mode.

vehicle.mode = VehicleMode("LAND")

time.sleep(3)

time.sleep(0.1)

A fallback option, if LAND_WHEN_BATTERY_LOW is set to True, is to have the

drone automatically switch to RTL mode when the battery is below a min-

imum battery voltage defined with MIN_BATTERY_VOLTAGE. This is done via

the SystemMonitorThread:

class SystemMonitorThread(Thread):

def __init__(self):

’’’ Constructor. ’’’

Thread.__init__(self)

def run(self):

while True:

if vehicle.battery.voltage < MIN_BATTERY_VOLTAGE:

if LAND_WHEN_BATTERY_LOW and not vehicle.mode.name==’RTL’:

modeChangeInProgress = True

vehicle.mode = VehicleMode("RTL")

while not vehicle.mode.name==’RTL’: #Wait until mode has

changed

time.sleep(1)

time.sleep(5)

48

5.5.7. Testing with drone simulator

The drone simulator, dronekit-sitl[60] was used on an up-to-date Ubuntu

15.10 system while developing and testing aspects of the drone control func-

tionality. It is installed with:

sudo apt-get install python-pip python-dev

pip install dronekit-sitl -UI

Running dronekit-sitl copter starts a copter simulator which listens on

the TCP port 5760. As seen in subsection 5.5., connection is established in

my code with --connect tcp:IPADDRESS:5760 passed in as a parameter.

5.6. Audio Playback

Audio playback via the speak(str) function below, uses text to speech to

acknowledge various commands and states15 such as ”Drone Armed”. It uses

espeak to create a WAV audio file which is then played back with omxplayer

if the configuration variable USE_AUDIO is set to True.

def speak(s):

if USE_AUDIO:

Popen(["/usr/bin/espeak", "\"" + s + "\"", "-ven-us+f4", "-s200",

"-w", "tmp.wav"], close_fds=True)

Popen(["/usr/bin/omxplayer", "tmp.wav", "--vol", "1000"],

close_fds=True)

5.7. Logging

Logging is enabled when the configuration variable LOGGING_ENABLED is set

to True. The log file is opened with the current time-stamp.

15speak was omitted in the code snippets shown in order to keep them shorter.

49

if LOGGING_ENABLED:

now = time.strftime("%c")

flightLogFile = open("logs/flight-" + now.replace(" ", "-").replace("--",

"-") + ".log", "a")

Then the writeToLog(str) function is used in various areas of the code16

in order to log the drones activity during flight. These logs were used for

debugging by analyzing them after flight.

def writeToLog(str):

if LOGGING_ENABLED:

flightLogFile.write(str)

5.8. Shutting down

The code is shutdown when it receives the SIGINT signal17, which invokes

the following handler function:

def handler(signum, frame):

if CONNECT_VEHICLE:

vehicle.close() # Close vehicle object

if USE_CAMERA:

capture.release() # Close camera

server.socket.close() # Close web server

Stop running threads

for thr in threading.enumerate():

while thr.isAlive():

try:

thr._Thread__stop()

except:

print "Additional thread could not be terminated"

if LOGGING_ENABLED:

16writeToLog was omitted in the code snippets shown in order to keep them shorter.
17SIGINT is created by the key combination control+C in the running terminal.

50

flightLogFile.close() # Close log file

sys.exit()

The SIGINT handler is setup with:

signal.signal(signal.SIGINT, handler)

6. Image Processing

For human detection, I began researching how to use OpenCV’s object de-

tection capabilities since I was already using OpenCV to capture images. I

found an article, Adrian Rosebrock’s: Pedestrian Detection OpenCV [64], by

the author of imutils[84], with an example of pedestrian detection using

OpenCV.

I used OpenCV’s object detection, which uses a Histogram of Oriented Gradients[69]

method in conjunction with a Linear Support Vector Machine.[70][71]

6.1. Dependencies

The dependencies for the Python image processing code can be installed

with the following:

sudo apt-get install python-numpy

sudo pip install imutils

sudo pip install cv2

51

6.2. Initial Attempt

I initially attempted to implement an

algorithm to identify humans in over-

head images in an open field with the

drone at an altitude of 30 meters and

with the camera at an angle of approx-

imately 45 degrees downwards.

Figure 28: Illustration of drone at 30m,
with camera at a 45 degree angle

6.2.1. Capturing Test Images

I initially collected a test image set of 5212 images. 2528 of the images are

positive, where there is a human in them. 2684 are negative images, where

there is not a human. These images were collected by having the drone fly

over routes, and moving myself into and out of the camera’s view.

Figure 29: Example positive image Figure 30: Example negative image

6.2.2. Algorithm

Adrian Rosebrock’s: Pedestrian Detection OpenCV [64], uses OpenCV’s

DefaultPeopleDetector. The example expects close-range, vertically and

52

horizontally level images, and did not function on my test images. I mod-

ified his example for my image processing code.

I used trainHOG,[63], which uses the svmlight engine[85], to train a new HOG/SVM

with my test images. trainHOG is compiled with the following on the Ubuntu

15.10 system mentioned in :

sudo apt-get install git pkg-config libopencv-dev

git clone https://github.com/DaHoC/trainHOG

cd trainHOG/

cd svmlight

wget http://download.joachims.org/svm_light/current/svm_light.tar.gz

tar -xf svm_light.tar.gz

make

cd ..

g++ ‘pkg-config --cflags opencv‘ -c -g -MMD -MP -MF main.o.d -o main.o main.cpp

gcc -c -g ‘pkg-config --cflags opencv‘ -MMD -MP -MF svmlight/svm_learn.o.d \

-o svmlight/svm_learn.o svmlight/svm_learn.c

gcc -c -g ‘pkg-config --cflags opencv‘ -MMD -MP -MF svmlight/svm_hideo.o.d \

-o svmlight/svm_hideo.o svmlight/svm_hideo.c

gcc -c -g ‘pkg-config --cflags opencv‘ -MMD -MP -MF svmlight/svm_common.o.d \

-o svmlight/svm_common.o svmlight/svm_common.c

g++ ‘pkg-config --cflags opencv‘ -o trainhog main.o svmlight/svm_learn.o \

svmlight/svm_hideo.o svmlight/svm_common.o ‘pkg-config --libs opencv‘

I split the test set approximately in half into a training set and validation

set. trainHOG expects the image to be of a resolution 64x128, so I needed to

resize the images using OpenCV. Since my images were horizontal instead of

vertical, I rotated them clockwise by 90 degrees.

Below is Python code to rotate and resize the images:

filePaths = list(paths.list_images("images"))

for filePath in filePaths:

filename = filePath[filePath.rfind("/") + 1:]

image = cv2.imread(filePath)

53

Rotate with PIL

pil_image = Image.fromarray(image)

pil_image = pil_image.rotate(270, expand=True)

Resize with OpenCV

image = np.array(pil_image)

image = cv2.resize(image, (64,128))

cv2.imwrite("imagesout/" + filename, image)

After re-sizing, the images were moved into ’pos’ and ’neg’ directories, sep-

arated by positive and negative images respectively, in trainHOG’s working

directory. Then the machine is trained by running ./trainhog.

After training, a file, genfiles/cvHOGClassifier.yaml is created containing

the SVMDetector vector needed by OpenCV. I then wrote the image process-

ing code using this vector:

hog = cv2.HOGDescriptor() # initialize the HOG descriptor

hog.setSVMDetector(np.array([... The SVMDetector vector goes here ...]))

filePaths = list(paths.list_images("images"))

positives = 0 # Number of positive detections

negatives = 0 # Number of negatives

maxWeight = 0 # Max weight seen

lapse = [] # An array keeping track of the number of lapses between positives

lapseCount = 0 # Keep track of the current running lapse count

for filePath in filePaths:

filename = filePath[filePath.rfind("/") + 1:]

image = cv2.imread(filePath)

original = image.copy() # Save the original image for output

Rotate with PIL

pil_image = Image.fromarray(image)

pil_image = pil_image.rotate(270, expand=True)

Resize with OpenCV

image = np.array(pil_image)

image = cv2.resize(image, (64,128))

54

Detection

(rects, ((weight))) = hog.detect(image)

Keep track of maximum weight seen

if len(weight) is 1 and weight > maxWeight:

maxWeight = weight

if len(rects) > 0 and len(weight) is 1 and weight > MINWEIGHT:

MINWEIGHT will be the minimum weight of the detection we want in

order to consider this a positive.

Positive

lapse.append(lapseCount)

lapseCount = 0

positives = positives + 1

cv2.imwrite("imagesout/pos/" + filename, original)

else:

Negative

lapseCount = lapseCount + 1

negatives = negatives + 1

cv2.imwrite("imagesout/neg/" + filename, original)

When the algorithm is done, print the results:

print "POSITIVES: " + str(positives)

print "NEGATIVES: " + str(negatives)

print "MAXWEIGHT: " + str(maxWeight)

print "LAPSES: " + str(lapse)

6.2.3. Results from Test Data

By running this with different values of MINWEIGHT, I was able to find a good

value which would cause the training set to have a very small number of false

positives, but approximately a 10% true positive detection rate. I determined

that this is a good enough detection rate since the camera will be capturing

at at 12-24 frames per second, so if a person is in view for one second then

55

they should be detected.

However, when running against the validation set the results were not good.

There were too many false positives .

I retrained the machine with the entire test set, and it functioned with the

following results.

Output from trainHOG when generating the vector:

Testing training phase using training set as test set

(just to check if training is ok - no detection quality conclusion with this!)

Results:

True Positives: 2184

True Negatives: 2387

False Positives: 297

False Negatives: 344

Testing custom detection using camera

Output from my Python code:

POSITIVES: 373

NEGATIVES: 4839

MAXWEIGHT: [[1.63662334]]

LAPSES: [410, 28, 561, 2, 32, 128, 5, 15, 9, 0, 4, 0, 0, 96, 2, 30, 33, 55,

50, 4, 1, 2, 1, 5, 1, 0, 3, 48, 1, 10, 1, 2, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 0, 1,

2, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 7, 0, 1, 6, 2, 0, 1, 0, 2,

0, 0, 3, 3, 0, 5, 9, 0, 1, 0, 3, 5, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 185, 0, 2, 2, 1, 1, 23, 36, 3,

0, 5, 1, 0, 1, 6, 1, 1, 1, 7, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,

0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 5, 14, 7, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,

5, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 3, 318, 6, 3, 78, 410, 3, 78, 0, 2, 0, 0, 0, 2, 1, 2, 2, 0, 0, 0, 2, 4,

1, 32, 18, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0,

8, 2, 0, 2, 3, 0, 1, 0, 2, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1,

20, 0, 0, 1, 3, 2, 2, 0, 1, 1, 8, 1, 0, 0, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 0,

56

0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 17, 9, 7, 3, 13, 17, 6, 6, 9, 0, 6, 0, 1, 818,

9, 135, 25, 244, 0, 276, 103, 6, 29, 59, 1]

Again there were a very small number of false positives, and about a 14%

detection rate. However, I was concerned about the lapse length between

correct detentions. The mean lapse was 12.8097, but the largest lapse was

818 images. This would be a lapse of 68.1677 seconds at 12fps, or 34.0833 at

24fps. I was also concerned about over-fitting to these specific images since

the validation set preformed poorly initially.

The performance speed for this algorithm was fast enough so it could run

on the Raspberry Pi.

6.2.4. Results from Live Data

When testing the algorithm live, the algorithm was barely functional with a

multitude of false positives and false negatives. I determined that I needed

a better algorithm.

6.3. Final Algorithm

I decided that using OpenCV’s DefaultPeopleDetector was the best course

of action at this point. I collected a test set with the drone at an altitude of

10 meters and a camera angle of approximately 15 degrees. This algorithm

would not depend on the surrounding area to be an open field, but would

function better if it was. Then I modified my previous code to use the built-

in person detector.

57

Figure 31: Illustration of drone at 10m, with camera at a 15 degree angle

I collected a test image set of 2799 positive images, some with obstacles in

the way, such as a tree, car, and park bench.

6.3.1. Algorithm

I modified my previous code to the following:

hog = cv2.HOGDescriptor() # initialize the HOG descriptor

hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())

filePaths = list(paths.list_images("images"))

positives = 0 # Number of positive detections

negatives = 0 # Number of negatives

for filePath in filePaths:

filename = filePath[filePath.rfind("/") + 1:]

image = cv2.imread(filePath)

Initial detection, this is faster and detects people at a far distance

better

(rects, weights) = hog.detectMultiScale(image, winStride=(2, 2),

padding=(8, 8), scale=4.2)

58

If no people were detected, we run a slower, close-range detection. The

image is resized for better results.

if len(rects) == 0:

image = imutils.resize(image, width=min(400, image.shape[1]))

(rects, weights) = hog.detectMultiScale(image, winStride=(4, 4),

padding=(8, 8), scale=1.05)

draw rectangles around detected people

for (x, y, w, h) in rects:

cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), 2)

if len(rects) > 0:

Positive detection

positives = positives + 1

cv2.imwrite("imagesout/pos/" + filename, image)

else:

Negative

negatives = negatives + 1

cv2.imwrite("imagesout/neg/" + filename, image)

When the algorithm is done, print the results:

print "POSITIVES: " + str(positives)

print "NEGATIVES: " + str(negatives)

I used Adrian Rosebrock’s: HOG detectMultiScale parameters explained[65]

article in order to figure out the best parameters to use with detectMultiScale

in the above code.

I attempted values for winStride between (1,1) and (8,8). (8,8) was too

inaccurate for resized images, (1,1) was too slow, and (4,4) was fine for

resized images, but was too inaccurate for people further away. (2,2) was

fast enough with enough accuracy for a further distance, so it is used first.

The scale is enlarged to 4.2 to increase processing time. 4.2 was four sec-

onds faster compared to 2.1. scale values larger than 4.2 did not help in-

59

crease processing time by a significant amount. The original values from

Adrian Rosebrock’s: Pedestrian Detection OpenCV [64] article were used for

the closer range detection.

6.3.2. Results

The algorithm functioned well, making 1819 positive detections, and 980

negatives. Most of the positive detections were correct, however some in-

correctly identified a tree or park bench as being a person, usually when the

image was blurred due to drone movement. The algorithm usually decides

that an image is negative if a person is only partially in the frame, such as

half of the body or only the torso.

Figure 32: Example positive image Figure 33: Example false positive image

7. Live Image Processing Implementation

Since the Raspberry Pi could not process images fast enough, I needed to

send the images to another, more powerful, machine as a dedicated image

processing computer. I used an ASUS G750JX-DB71 laptop with Ubuntu

14.04.4 LTS installed. The ASUS laptop can process approximately 3 images

per second.

60

7.1. Dependencies

The additional dependencies needed for transferring the images from the

Raspberry Pi to the image processing computer can be installed on Raspbian

with the following commands:

sudo apt-get install libffi-dev

sudo pip install cryptography

sudo pip install pysftp

The pysftp[80] library is used in order to send images over SFTP (SSH File

Transfer Protocol) to the dedicated image processing computer. This library

depends on libffi[81], and the cryptography python library.[82]

7.2. Receiving Images from the Drone

The image processing computer had the user ’pi’ added to it. The CaptureThread

in the Raspberry Pi drone code had the following added to it, so that if the

option CONFIG_SEND_IMAGES was set to True, then images would be sent to

the image processing machine.

if CONFIG_SEND_IMAGES:

sftpSendCounter = 0

print "SENDING IMAGE."

try:

with pysftp.Connection(’IP_ADDRESS’, username=’pi’,

password=’PASSWORD_GOES_HERE’) as sftp:

with sftp.cd(’image-processing/images’): # temporarily chdir

sftp.put("images/" + filename) # upload file

except:

print "Failed to connect to SFTP host."

In order to process the images when they were uploaded to the computer,

and display them, the image = cv2.imread(filePath) line in the previous

61

image processing code from subsection 6.3. was changed to the following:

Ensures the file is not empty when it is being processed

if os.stat("images" + "/" + filename).st_size > 0:

image = cv2.imread("images" + "/" + filename)

Displays the last image

cv2.imshow(’Drone Image Feed’, image)

cv2.waitKey(1)

Additionally, the for loop in the code was changed to have a while loop sur-

rounding it which checks for new files uploaded to the machine:

Empty set initially

imagePaths = set([])

Launch the image display window

cv2.namedWindow(’Drone Image Feed’, cv2.WINDOW_AUTOSIZE)

while True:

imagePathsOld = imagePaths

imagePaths = set(os.listdir("images"))

Get the new files, difference between current and new

currentFiles = list(imagePaths - imagePathsOld)

os.chdir("images")

Sort by time so they are processed in correct order

currentFiles.sort(key=os.path.getmtime)

os.chdir("..")

for filename in currentFiles:

Do the image processing here

7.3. Email Functionality

A Python script was created in order to send an email when a person is de-

tected by the image processing computer. Similarly to the image process-

ing script, this script checks for new files in the ”imagesout/pos” directory.

When a new image is detected, it sends an HTML email via GMail with the

62

image, location, and current time.

This function sends the email:

def send_email(user, pwd, recipient, subject, img, lat, lng, timestamp):

gmail_user = user

gmail_pwd = pwd

TO = recipient if type(recipient) is list else [recipient]

msg = MIMEMultipart()

msg[’From’] = user

msg[’To’] = ",".join(TO)

msg[’Subject’] = subject

msg.preamble = subject

html = """\

<html>

<head></head>

<body>

A person was detected on """ + timestamp + """ at <a

href="https://www.google.com/maps/?q=""" + lat + "," + lng +

"""">this location from the attached image.

</body>

</html>

"""

part = MIMEText(html, ’html’)

msg.attach(part)

msg.attach(img)

try:

server = smtplib.SMTP("smtp.gmail.com", 587)

server.ehlo()

server.starttls()

server.login(gmail_user, gmail_pwd)

server.sendmail(FROM, TO, msg.as_string())

server.close()

except:

print "failed to send mail"

63

When a new image is detected, the image is read and the function is called.

The latitude and longitude are parsed from the filename.

image = cv2.imread(args["images"] + "/" + filename)

parts = filename.split("_")

lat = parts[0]

lng = parts[1]

timestamp = time.strftime("%c")

fp = open(args["images"] + "/" + filename, ’rb’)

img = MIMEImage(fp.read())

fp.close()

send_email("someone@gmail.com", "PASSWORD_GOES_HERE", [... List of email

address to send to ...], "ALERT: Person Detected on " + timestamp, img,

lat, lng, timestamp)

Figure 34: An email sent from the image processing code

64

The hyperlink in the email shown in figure 34 goes to the URL,

https://www.google.com/maps/?q=40.098989,-88.1994112. See figure 35.

Figure 35: The Google Maps link contained in the email

7.4. Live Results

The live results of the final image processing algorithm were good. Out of

600 images taken, 199 were correct positives. There were no false positives,

as it was tested over an open field, and the false negative rate was approx-

imately 50%, usually when the person was out of the frame or if the image

was blurred. A 50% correct positive rate is much better than the initial al-

gorithm’s results. On average, one out of every two frames containing a per-

son would correctly identify them. At a capture rate between 12-24 frames

per second, a person should be identified correctly if they appear within the

camera’s view.

65

8. Conclusion

In conclusion, I have shown that autonomous drones are a completely vi-

able option for the automatic surveillance of open areas of property. In-

dividuals, businesses, and government entities could use them to improve

security. The implementation I have described in this paper allows a drone

to takeoff, patrol a pre-defined area, and return to its takeoff location fully

autonomously.

However, this implementation is not completely automatic since the flight

time is approximately 15 minutes. Someone will need to be handling the

replacement and charging of batteries. An implementation with a robotic

charging bay could solve this issue. This would have the drone takeoff from

a charging bay, where the charging bay would automatically replace and

recharge batteries, with robotic arms for instance. Inductive charging[66]

(wireless charging), could be another solution.

There is also the concern about the drone having only a 50% rate of correct

human detection. I do not believe this is a large concern, as the drone can

travel much faster than a human can run. This could be alleviated by having

a fleet of drones patrol in a pattern, possibly communicating with each other

so that they are synchronized with their positions.

Due to the issues mentioned with incorrect identifications when the image

is blurred a better camera could help alleviate this issue. Having the drone

rotate 360 degrees when reaching a point could help alleviate the issue of

people being partially out of the frame not being recognized. A stereo cam-

era with two lenses in order to perceive depth, or a better algorithm could

also aid in recognition. An example of this is DJI’s new drone.[67] An addi-

tional future improvement could be to use a microphone on the drone, but

this would be a challenge to filter out the propeller noise.

66

Autonomous surveillance drones could also be used for uses other than

surveilling private property. The drone could receive GPS information from

the mobile phone via the web interface and follow the owner capturing im-

ages for additional security as they are walking in a public area, such as a

park. Police can use drones to aid in chases of suspects, or surveil an area

for suspicious activity. Drones can also be used to patrol over roads and

highways, identifying the speed of cars.

However, uses of drones come with safety hazards. A malfunction could

cause the drone to crash and damage property, injure, or even kill a per-

son. In the United States, there are also many regulations towards operating

drones[68]. For individual use, the Federal Aviation Administration (FAA) re-

quires that the drone is kept in line of sight of the operator, so legally you can

not have a drone autonomously patrolling the area around your house. For

business purposes, the drone and its use needs to be approved by the FAA.

67

A Appendix: Parts and Components List

This appendix contains the full parts and components list and their descriptions.

Part Name Description

Raspberry Pi (Pi 2 Model B or Pi 3 Model B) Drone companion computer

Raspberry Pi Case

32GB Micro SD Card Storage for Raspberry Pi

APM 2.6+ Assembled (ArduPilot Mega) Autopilot board based on Arduino

3DR uBlox GPS with Compass Kit GPS and compass, connects to the APM

Edimax EW-7318USg USB WiFi Dongle USB WiFi Dongle for Raspberry Pi

Logitech Tessar 2.0/3.7 USB Webcam Camera for the Raspberry Pi

Hobby King 2.4Ghz 6Ch Transmitter and Re-

ceiver V2 (Mode 2)

Radio transmitter and receiver used to manually pilot the

drone

DJI Flamewheel F450 ARF Kit Kit including the drone’s body, arms, power distribu-

tion board, DJI E-SERIES 420 LITE electronic speed con-

trollers, DJI 2312E motors, and 9 inch propellers

Two DJI Flame Wheel 450/550 Landing Gear

Sets

Landing gear with spares in case of crash damage

Spare DJI Phantom 2 Vision Self-Tightening 9

Inch Propellers

Spare propellers in case of crash damage

Boom Cube Speaker Speaker for Raspberry Pi Audio, has built-in battery

charged by mini USB

68

APM Power Module with XT60 Connectors Kit Pass-through XT60 cable with power module board. The

power module supplies 2.25A at 5.37V and provides volt-

age monitoring. Includes connection cable to APM.[6]

Two Zippy Flightmax 2200mAh 3S1P 40C Bat-

teries

11.1V Lithium polymer batteries with XT60 connectors

Female XT60 Connector Used to solder to battery connector cables to the power

distribution board

UBEC DC/DC Step-Down (Buck) Converter - 5V

@ 3A output

Step down converter to power the Raspberry Pi

Two USB to Micro-USB cables Used for connecting the Raspberry Pi to the APM, and for

connecting the power cable from the UBEC to the Rasp-

berry Pi

Three male to male servo cables Connects the radio receiver to the APM.

One male to female servo cable Connects the power cable from the UBEC to the Rasp-

berry Pi

Plastic Zip-ties Zip-ties used for securing components

VELCRO Brand - Industrial Strength - 2 Inch

Strips

Velcro strips used for securing components

Soldering iron, heat gun, solder, wire stripper Used when soldering wires to connections on the power

distribution board and soldering wires together

Heat shrink tubing and electrical tape Used to cover cables after soldering

SMAKN 1-8S Battery Checker Used to check battery voltage before and after flight

Tenergy TB6-B Balance Charger Lithium polymer battery charger

XT60 Charge Cable Banana Plug Charging cable for batteries

BW Fireproof Lipo Battery Safe Bag Contains the batteries while charging in case of a fire

69

References

[1] Raspberry Pi

https://en.wikipedia.org/wiki/Raspberry Pi

[2] Wikipedia: Real-time operating system

https://en.wikipedia.org/wiki/Real-time operating system

[3] Wikipedia: Ardupilot

https://en.wikipedia.org/wiki/Ardupilot

[4] ArduPilot Documentation: Altitude Hold Mode

http://ardupilot.org/copter/docs/altholdmode.html

[5] Federal Aviation Administration: Aircraft Registry – Aircraft Registration: Unmanned

Aircraft (UA)

https://www.faa.gov/licenses certificates/aircraft certification/aircraft registry/UA/

[6] ArduPilot Documentation: Powering the APM2 – Copter Documentation

http://ardupilot.org/copter/docs/common-powering-the-apm2.html

[7] DJI: F450 User Manual v2.2

http://www.dji.com/product/flame-wheel-arf/download

http://dl.djicdn.com/downloads/flamewheel/en/F450 User Manual v2.2 en.pdf

[8] ArduPilot Documentation: DJI F330 FlameWheel QuadCopter Assembly – Copter Doc-

umentation

http://ardupilot.org/copter/docs/dji-f330-flamewheel.html

[9] DJI: Landing Gear for Flame Wheel

http://www.dji.com/product/flame-wheel-arf/download

http://dl.djicdn.com/downloads/flamewheel/Landing Gear for Flame Wheel.pdf

[10] ModMyPi: How do I power my Raspberry Pi

http://www.modmypi.com/blog/how-do-i-power-my-raspberry-pi

[11] DIY Drones: Connect USB and power module at the same time?

http://diydrones.com/forum/topics/connect-usb-and-power-module-at-the-same-

time

70

[12] Jethro Hazelhurst: Typical Quadcopter Layout

http://www.arducopter.co.uk/all-arducopter-guides/2connectingeverything-for-

arducopter

[13] ArduPilot Documentation: Connect ESCs and Motors – Copter Documentation

http://ardupilot.org/copter/docs/connect-escs-and-motors.html

[14] ArduPilot Documentation: Stabilize Mode

http://ardupilot.org/copter/docs/stabilize-mode.html

[15] Raspberry Pi Foundation: Download Raspbian for Raspberry Pi

https://www.raspberrypi.org/downloads/raspbian/

[16] Raspberry Pi Foundation: Index of /raspbian/images/raspbian-2015-09-28

https://downloads.raspberrypi.org/raspbian/images/raspbian-2015-09-28/

[17] Raspberry Pi Foundation: Index of /raspbian/images/raspbian-2016-02-29

https://downloads.raspberrypi.org/raspbian/images/raspbian-2016-02-29/

[18] SourceForge: Win32 Disk Imager

https://sourceforge.net/projects/win32diskimager/

[19] Raspberry Pi Documentation: Installing operating system images

https://www.raspberrypi.org/documentation/installation/installing-images/

README.md

[20] Wikipedia: Wi-Fi Protected Access

https://en.wikipedia.org/wiki/Wi-Fi Protected Access

[21] Wikipedia: CCMP

https://en.wikipedia.org/wiki/CCMP

[22] How-To Geek: Warning: Encrypted WPA2 Wi-Fi Networks Are Still Vulnerable to

Snooping

http://www.howtogeek.com/204335/warning-encrypted-wpa2-wi-fi-networks-are-

still-vulnerable-to-snooping/

[23] Null Byte: How to Hack Wi-Fi: Cracking WPA2-PSK Passwords Using Aircrack-Ng

http://null-byte.wonderhowto.com/how-to/hack-wi-fi-cracking-wpa2-psk-

passwords-using-aircrack-ng-0148366/

71

[24] Rootsh3ll Wi-Fi Security and Pentesting Series (RWSPS): Cracking WPA2-PSK with

Aircrack-ng [ch3pt4]

http://www.rootsh3ll.com/2015/09/rwsps-wpa2-cracking-aircrack-ng-dictionary-

attack-ch3pt4/

[25] How Secure Is My Password?

https://howsecureismypassword.net/

[26] Information Security Stack Exchange: Why is WPA Enterprise more secure than WPA2?

http://security.stackexchange.com/questions/35780/why-is-wpa-enterprise-more-

secure-than-wpa2

[27] Eric Geier: Deploying WPA2-Enterprise Wi-Fi Security in Small Businesses

http://www.windowsnetworking.com/articles-tutorials/wireless-networking/

Deploying-WPA2-Enterprise-Wi-Fi-Security-Small-Businesses.html

[28] Raspberry Pi Documentation: raspi-config

https://www.raspberrypi.org/documentation/configuration/raspi-config.md

[29] GitHub: ArduPilot/apm planner: APM Planner Ground Control Station (Qt)

https://github.com/ArduPilot/apm planner

[30] ArduPilot Documentation: Installing Mission Planner

http://ardupilot.org/copter/docs/common-install-mission-planner.html

[31] Wikipedia: MAVLink

https://en.wikipedia.org/wiki/MAVLink

[32] ArduPilot Documentation: MAVLink Commands

http://ardupilot.org/dev/docs/mavlink-commands.html

[33] ArduPilot Documentation: APM 2.5 and 2.6 Overview

http://ardupilot.org/copter/docs/common-apm25-and-26-overview.html

[34] ArduPilot Documentation: Loading Firmware onto Pixhawk/APM2.x/PX4

http://ardupilot.org/copter/docs/common-loading-firmware-onto-pixhawk.html

[35] ArduPilot Documentation: Mandatory Hardware Configuration

http://ardupilot.org/copter/docs/configuring-hardware.html

72

[36] ArduPilot Documentation: Electronic Speed Controller (ESC) Calibration

http://ardupilot.org/copter/docs/esc-calibration.html

[37] ArduPilot Documentation: Compass Calibration in Mission Planner

http://ardupilot.org/copter/docs/common-compass-calibration-in-mission-planner.

html

[38] Wikipedia: Magnetic declination

https://en.wikipedia.org/wiki/Magnetic declination

[39] DIY Drones: NEW FEATURE: Automatic Compass Declination

http://diydrones.com/profiles/blogs/new-feature-automatic-compass-declination

[40] ArduPilot Documentation: Accelerometer Calibration in Mission Planner

http://ardupilot.org/copter/docs/common-accelerometer-calibration.html

[41] ArduPilot Documentation: Advanced Compass Setup

ardupilot.org/copter/docs/common-compass-setup-advanced.html

[42] We Work We Play: Automatically connect a Raspberry Pi to a Wifi network

http://weworkweplay.com/play/automatically-connect-a-raspberry-pi-to-a-wifi-

network/

[43] Polytechnic University of Catalonia: Example wpa supplicant configuration file

http://www.cs.upc.edu/lclsi/Manuales/wireless/files/wpa supplicant.conf

[44] Raspberry Pi Forums: How to disable the Pi3’s WLAN & Bluetooth?

https://www.raspberrypi.org/forums/viewtopic.php?f=63&t=138610

[45] Dorkbot PDX: External antenna modifications for the Raspberry Pi 3

http://www.dorkbotpdx.org/blog/wramsdell/external antenna modifications for

the raspberry pi 3

[46] The MagPi Magazine: Raspberry Pi 3 is out now! Specs, benchmarks & more

https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-benchmarks/

[47] ArduPilot Documentation: Flight Modes

http://ardupilot.org/copter/docs/flight-modes.html

http://diydrones.com/forum/topics/copter-propellers-rotation-incorrect

73

[48] GitHub: dronekit/dronekit-python: DroneKit-Python library for communicating with

Drones via MAVLink.

https://github.com/dronekit/dronekit-python

[49] IndoorFPV.com: LiPo Batteries- Key Points To Remember

http://indoorfpv.com/content/lipo-batteries-key-points-remember

[50] Gabriel Staples: Restoring/Recharging Over-discharged LiPo (Lithium Polymer) Bat-

teries!

http://www.electricrcaircraftguy.com/2014/10/restoring-over-discharged-LiPos.html

[51] Revolectrix: Battery C Rating

http://www.revolectrix.com/tech data/lipoCalc/Battery C Rating.htm

[52] All-Battery.com: Tutorial: Tenergy TB6B Balance Charger for NiMH/LiPO/LiFe Battery

Packs

https://www.youtube.com/watch?v=5AIAomVTKHw

[53] DroneKit-Python: Example: Simple Go To (Copter)

http://python.dronekit.io/examples/simple goto.html

[54] Igor Maculan: Simple Python Motion Jpeg (mjpeg server) from webcam. Using:

OpenCV,BaseHTTPServer

https://gist.github.com/n3wtron/4624820

[55] Stack Overflow: Multithreaded web server in python

http://stackoverflow.com/a/14089457

[57] Stack Overflow: HTTP GET request in JavaScript?

http://stackoverflow.com/a/4033310

[58] Google Developers: Google Maps JavaScript API

https://developers.google.com/maps/documentation/javascript/

[59] Python 2.7.11 Documentation: threading Higher-level threading interface

https://docs.python.org/2/library/threading.html

74

[56] GitHub: nikkifayra/ivPID forked from ivmech/ivPID: Python PID Controller
https://github.com/nikkifayra/ivPID

[60] DroneKit Documentation: Setting up a Simulated Vehicle (SITL)

http://python.dronekit.io/develop/sitl setup.html

[61] ArduPilot Documentation: Loiter Mode

http://ardupilot.org/copter/docs/loiter-mode.html

[62] Stack Exchange, Ask Ubuntu: How do you reset a USB device from the command line?

http://askubuntu.com/a/661

[63] GitHub: DaHoC/trainHOG: Example program showing how to train your custom HOG

detector using openCV

https://github.com/DaHoC/trainHOG

[64] Adrian Rosebrock: Pedestrian Detection OpenCV (Adrian informed me via email that

the sample is under the MIT License.)

http://www.pyimagesearch.com/2015/11/09/pedestrian-detection-opencv/

[65] Adrian Rosebrock: HOG detectMultiScale parameters explained

http://www.pyimagesearch.com/2015/11/16/hog-detectmultiscale-parameters-

explained/

[66] Wikipedia: Inductive charging

https://en.wikipedia.org/wiki/Inductive charging

[67] The Verge: The revolutionary chipmaker behind Googles project Tango is now

powering DJIs autonomous drone

http://www.theverge.com/2016/3/16/11242578/movidius-myriad-2-chip-computer-

vision-dji-phantom-4

[68] Federal Aviation Administration: Unmanned Aircraft Systems (UAS) Frequently Asked

Questions

https://www.faa.gov/uas/faq/

[69] Wikipedia: Histogram of oriented gradients

https://en.wikipedia.org/wiki/Histogram of oriented gradients

[70] Wikipedia: Support vector machine

https://en.wikipedia.org/wiki/Support vector machine

75

[71] Adrian Rosebrock: Histogram of Oriented Gradients and Object Detection

http://www.pyimagesearch.com/2014/11/10/histogram-oriented-gradients-object-

detection/

[72] Google Play: ConnectBot

https://play.google.com/store/apps/details?id=org.connectbot&hl=en

[73] Google Play: VNC Viewer

http://www.pyimagesearch.com/2014/11/10/histogram-oriented-gradients-object-

detection/

[74] Stack Overflow: Google Maps API 3 - Custom marker color for default (dot) marker

http://stackoverflow.com/questions/7095574/google-maps-api-3-custom-marker-

color-for-default-dot-marker

[75] Wikipedia: Dilution of precision (GPS)

https://en.wikipedia.org/wiki/Dilution of precision %28GPS%29

[76] Wikipedia: PID controller

https://en.wikipedia.org/wiki/PID controller

[77] eSpeak: Speech Synthesiser

http://espeak.sourceforge.net/

[78] eLinux.org: Omxplayer

http://elinux.org/Omxplayer

[79] Stack Overflow: What is the best way to compare floats for almost-equality in Python?

http://stackoverflow.com/a/33024979

[80] Python Package Index: pysftp 0.2.8

https://pypi.python.org/pypi/pysftp

[81] Wikipedia: libffi

https://en.wikipedia.org/wiki/Libffi

[82] Python Package Index: cryptography 1.3.2

https://pypi.python.org/pypi/cryptography

[83] DroneKit Documentation: Example: Channels and Channel Overrides

http://python.dronekit.io/examples/channel overrides.html

76

[84] GitHub: jrosebr1/imutils

https://github.com/jrosebr1/imutils

[85] SVMlight: Support Vector Machine

http://svmlight.joachims.org/

[86] Wikipedia: Representational state transfer

https://en.wikipedia.org/wiki/Representational state transfer

[87] Raspberry Pi Documentation: Using a standard USB webcam

https://www.raspberrypi.org/documentation/usage/webcams/

[88] Raspberry Pi Documentation: raspistill

https://www.raspberrypi.org/documentation/usage/camera/raspicam/raspistill.md

[89] NGINX

https://www.nginx.com/resources/wiki/

[90] TightVNC: VNC-Compatible Free Remote Control / Remote Desktop Software

http://www.tightvnc.com/

[91] GitHub: mavlink/pymavlink/

https://github.com/mavlink/mavlink/tree/master/pymavlink

[92] OpenCV

http://opencv.org/

[93] Pre-Arm Safety Check

http://ardupilot.org/copter/docs/prearm safety check.html

[94] Stack Overflow: Is there a chart of which OSS License is compatible with which?

http://stackoverflow.com/questions/1978511/is-there-a-chart-of-which-oss-license-

is-compatible-with-which

[95] Free Software Foundation: GNU General Public License Version 3

http://www.gnu.org/licenses/gpl-3.0.en.html

[96] Association for Computing Machinery: Guidance for Authors on Fair Use

http://www.acm.org/publications/guidance-for-authors-on-fair-use

77

Copyright and Fair Use Notice, Information, and Disclaimers

Under Section 107 of the United States Copyright Act of 1976, certain uses of copyrighted

material may be made without obtaining permission from the copyright holder under the

Fair Use exception. Specifically, allowance is made for limited use of copyrighted work with-

out permission for purposes such as criticism, comment, news reporting, teaching, schol-

arship, and research.[96]

For more information see: http://www.acm.org/publications/guidance-for-authors-on-fair-

use

All copyrights belong to their respective owners. Images and text owned by other copy-

right holders are used under the guidelines of the Fair Use provisions under Section 107. All

material owned by other copyright holders is given proper attribution. In accordance with

Section 107, this paper is distributed without profit for research and educational purposes.

The following images in this document are copyrighted by their respective owners and used

with attribution given: figures 1, 2, 3, 5, 12, and 15.

Additional images in this document which were created by the author of this paper may

depict copyrighted and/or trademarked third-party software or materials.

No third-party entity, product, component, software, or other work mentioned in this doc-

ument should be implied to endorse or promote this paper or the author of this paper. The

third-party entities, products, components, software, and other works chosen for use by

the author of this paper were the author’s own choices, and should not be viewed as an

endorsement or recommendation.

All third party code included in source code sections in this paper are licensed under com-

patible open source licenses to the GNU GPL v3.[94] Source code snippets in this paper are

thereby licensed under the GNU GPL v3.[95]

All original materials created by the author of this paper, except for images which depict

copyrighted and/or trademarked third-party software or materials, are

Copyright c©

All Rights Reserved.

78

2016 Nikki Fayra.

Redistribution of any source code part of this document licensed under the GNU GPL v3

as defined above is subject to the terms and conditions of the GNU General Public License

Version 3. A copy can be obtained here: http://www.gnu.org/licenses/gpl-3.0.en.html.

Redistribution of any (non-source code) part of this document copyrighted by the author of

this paper is permitted provided that all of the following conditions are met:

• The name of the author may not be used to endorse or promote products derived

from this paper without specific prior written permission of the author.

• The purpose of redistribution falls under Section 107 of the United States Copyright

Act of 1976.

• Proper attribution is given.

• The redistribution is unmodified, unless it is an image or a section of text of a para-

graph or less.

Redistribution not meeting the above conditions is prohibited without specific prior

written permission of the author.

THIS DOCUMENT IS PROVIDED BY THE COPYRIGHT HOLDER ”AS IS” AND ANY EX-

PRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER BE LIABLE FOR ANY DI-

RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-

VICES; PHYSICAL INJURY; PROPERTY DAMAGE; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENT, EVEN IF AD-

VISED OF THE POSSIBILITY OF SUCH DAMAGE.

79

